IETF61 DNSOP
2004/11/07

Kazunori Fujiwara, JPRS <fujiwara@jprs.co.jp>
Keisuke Ishibashi, NTT <ishibashi.keisuke@lab.ntt.co.jp>
Katsuyasu Toyama, NTT <toyama.katsuyasu@lab.ntt.co.jp>
Topics

- Protecting cache server against misconfiguration of DNS authoritative servers
 - We had a terrible cache server overload.
 - This is caused by misconfigured authoritative servers.
 - Protection method is needed for ISP cache server.

- This topic has more issues about DNS protocol.
 - DNS Response size consideration
 - EDNS0 implementation status
 - EDNS0(with fragmentation) and IPv6
 - DNS anycast vs TCP query (not mentioned in the draft -01)
Cache server overload (1)

- There are some authoritative server misconfiguration
 - large response size RRSet
 - Many (32) PTRs in one IP address
 - no EDNS0
 - TCP filtering at authoritative servers

- and this RRSet is major IP address, many clients query this address frequently.

- What happens as a result?
 - In every query, truncation occurs.
 - At that time, cache server queries again by TCP.
 - But TCP is blocked by filter.
 - Then cache server has many ’stocled’ TCP SYN_SENT status and makes high load.
Authoritative server misconfiguration can create significant overloads on cache servers.

- This behavior was found through the observation of query traffic to/from ISP cache servers.
- And we reported it in NANOG32 meeting in October.

Attacker can make a DoS attack to ISP cache servers using this problem.

- Attacker prepares an authoritative server and a RRSet with this problem.
- Attacker sends a lot of queries with spoofed source addresses, as if they are sent from various clients.

From the ISP users view, failure of DNS cache server is almost equal to the failure of the Internet service itself.

We should protect DNS cache servers.
How to decrease TCP sessions in Resolver server

- One idea: do not query by TCP when truncation
 - It reduces TCP sessions.
 - But the answer which is supposed to be able to get it properly if it listens with TCP can’t be resolved.
 - It cannot cache any data (RFC 2308).
 - All resolving request, the cache server queries to all the authoritative servers by UDP.
 - More, it may violate RFC2181.

- Needs new cache/resolver server algorithm
Cache/Resolver server algorithm improvement

- We propose
 - As before, the cache server queries by UDP (w/wo EDNS0) and if TC bit is set, the cache server queries again the authoritative server by TCP.

 - (new) When queries for all authoritative servers are unsuccessful, the cache server caches that RRSet(name, class, type) as unresolvable.

 - (new) Next query for the same RRSet from stub resolvers, the cache server does not query to authoritative servers and answers "unresolvable".

 - (optional) Cache server marks misconfigured servers which does not respond TCP. (equivalent to BIND9’s EDNS0 capability database.)
Protocol consideration

RFC2308 section 7 - Other Negative Responses

○ This section does not mention about TCP filtering.
 ▶ UDP is OK
 ▶ no answer by TCP, no TCP reset

○ RFC 2308 7.1: "... In either case a resolver MAY cache a server failure response. If it does so it MUST NOT cache it for longer than five (5) minutes, and it MUST be cached against the specific query tuple <query name, type, class, server IP address>.

But

○ 5 minutes is too small to protect from DoS.
○ In our case, authoritative server’s misconfiguration lasted in about a half year.

Our proposal

○ For protecting cache servers, we recommend to cache unresolvable information for several hours.
DNS Response size consideration

- DNS response size lower than 512 octets
 - safe with Original UDP DNS protocol

- 512 < DNS response size <= 1280 - (IP/UDP)header size (1200? octets)
 - safe with EDNS0 without IPv6 fragmentation
 - (on the present Internet, IPv4 is the same as IPv6.)
 - TCP is OK

- 1200? < DNS response size
 - EDNS0 needs IP/IPv6 fragmentation
 - TCP is OK
EDNS0 implementation status

Question

Now, EDNS0 requirement is "SHOULD". Is this OK?

When will EDNS0 requirement be "MUST"?

This discussion is need for enum-wg.

RRSet may be large in ENUM.
EDNS0(with fragmentation) and IPv6

- According to RFC3226 section 3
 - "All RFC 2535 and RFC 2874 compliant entities MUST be able to handle fragmented IPv4 and IPv6 UDP packets." (to support EDNS0 with large response size)

- But RFC2460 "IPv6 Specification" section 5
 - "the use of such fragmentation is discouraged in any application that is able to adjust its packets to fit the measured path MTU."

- Question
 - EDNS0 with large response size requires IPv4 and IPv6 fragmentation. Is it OK? (I think OK.)
DNS anycast vs TCP query (not mentioned in the draft -01)

- TCP queries may work on DNS anycast with BGP.
 - Routing information may be stable for a short time.
 - Equal cost multi path doesn’t occur in principle.
 - But ECMP problem occurs in the Internet, more investigation is necessary.
 - TCP communication may work for a short time.
 - DNS queries using TCP is completed in a short time.

- DNS anycast with IGP
 - "Equal cost multi path" problem can be solved with per flow routing.

- Need more consideration.
A minimal requirement may be

- **DNS response size exceeds 512 octets**
 - the authoritative name servers MUST permit TCP queries
 - or MUST support EDNS0

- **DNS response size exceeds 1200 octets**
 - the authoritative name servers MUST permit TCP queries
 - AND MUST support EDNS0
Summary

- TCP support for DNS is now mandatory, but there are many authoritative servers which do not support TCP.

- EDNS0 has IP/IPv6 fragment issues.

- Still need for protection mechanism for DNS cache server.

- This I-D should be separated as two I-Ds.
 - Negative cache issue
 - Today’s DNS requirements
We would like to thank Ichiro Mizukoshi, Haruhiko Ohshima, Masahiro Ishino, Chika Yoshimura, Tsuyoshi Toyono, Hirotaka Matsuoka, Yasuhiro Morisita, Bill Manning and Rob Austein.
Questions

☐ need Comments

☐ Please discuss in dnsop mailing list.